Homotopy category of projective complexes and complexes of Gorenstein projective modules
نویسنده
چکیده
Let R be a ring with identity and C(R) denote the category of complexes of R-modules. In this paper we study the homotopy categories arising from projective (resp. injective) complexes as well as Gorenstein projective (resp. Gorenstein injective) modules. We show that the homotopy category of projective complexes over R, denoted K(Prj C(R)), is always well generated and is compactly generated provided K(Prj R) is so. Based on this result, it will be proved that the class of Gorenstein projective complexes is precovering, whenever R is a commutative noetherian ring of finite Krull dimension. Furthermore, it turns out that over such rings the inclusion functor ι : K(GPrj R) ↪→ K(R) has a right adjoint ιρ, where K(GPrj R) is the homotopy category of Gorenstein projective R modules. Similar, or rather dual, results for the injective (resp. Gorenstein injective) complexes will be provided. If R has a dualising complex, a triangle-equivalence between homotopy categories of projective and of injective complexes will be provided. As an application, we obtain an equivalence between the triangulated categories K(GPrj R) and K(GInj R), that restricts to an equivalence between K(Prj R) and K(Inj R), whenever R is commutative, noetherian and admits a dualising complex.
منابع مشابه
Homotopy Categories, Leavitt Path Algebras, and Gorenstein Projective Modules
For a finite quiver without sources or sinks, we prove that the homotopy category of acyclic complexes of injective modules over the corresponding finite-dimensional algebra with radical square zero is triangle equivalent to the derived category of the Leavitt path algebra viewed as a differential graded algebra with trivial differential, which is further triangle equivalent to the stable categ...
متن کاملComplexes of $C$-projective modules
Inspired by a recent work of Buchweitz and Flenner, we show that, for a semidualizing bimodule $C$, $C$--perfect complexes have the ability to detect when a ring is strongly regular.It is shown that there exists a class of modules which admit minimal resolutions of $C$--projective modules.
متن کاملSymmetric Auslander and Bass Categories
We define the symmetric Auslander category A(R) to consist of complexes of projective modules whose leftand righttails are equal to the leftand right-tails of totally acyclic complexes of projective modules. The symmetric Auslander category contains A(R), the ordinary Auslander category. It is well known that A(R) is intimately related to Gorenstein projective modules, and our main result is th...
متن کاملGorenstein Model Structures and Generalized Derived Categories
In [Hov02], the second author introduced the Gorenstein projective and Gorenstein injective model structures on R-Mod, the category of R-modules, where R is any Gorenstein ring. These two model structures are Quillen equivalent and in fact there is a third equivalent structure we introduce; the Gorenstein flat model structure. The homotopy category with respect to each of these is called the st...
متن کاملThe Homotopy Category of Complexes of Projective Modules
The homotopy category of complexes of projective left-modules over any reasonably nice ring is proved to be a compactly generated triangulated category, and a duality is given between its subcategory of compact objects and the finite derived category of right-modules.
متن کامل